• Galbraith Vance posted an update 3 days, 13 hours ago

    side-chain on the antiproliferative effect, as demonstrated by the 5-nitrofuroyl D- and L-alaninyl containing derivatives with similar IC50 values. The observed differences in the inhibition of adhesion and migration by the oxazolidinones on Kelly cells provide a new therapeutic approach that needs further investigation.

    Pyruvate kinase M2 (PKM2) is an enzyme that is predominantly overexpressed in various types of cancer. The role of PKM2 in liver fluke-associated cholangiocarcinoma (CCA) remains unclear. This study aimed to investigate the antitumor activity of shikonin, a PKM2 inhibitor, in CCA cells.

    Immunohistochemistry and immunoblotting were used to determine PKM2 expression in CCA tissues and cells. Antiproliferative effects of shikonin were evaluated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, colony-formation and trypan blue exclusion assays. The anti-metastatic activity of shikonin was determined using the Boyden chamber assay. Mechanisms by which shikonin inhibited CCA progression were determined.

    PKM2 was overexpressed in CCA compared to normal bile duct epithelial cells. Shikonin significantly inhibited growth, and migration of CCA cells while inducing their death. A mechanistic study revealed that antitumor effects of shikonin in CCA cells depended on increased production of reactive oxygen species.

    Shikonin may be a novel therapeutic agent for patients with CCA.

    Shikonin may be a novel therapeutic agent for patients with CCA.

    Epithelial-mesenchymal transition (EMT) via Sonic Hedgehog (Shh) signaling may be one of the mechanisms of progression of castration-resistant prostate cancer (CRPC). In this study, we investigated the possible therapeutic effect of vismodegib, a new Shh inhibitor, in a mouse CRPC model.

    We determined cell proliferation, apoptosis and the expression of EMT-related genes for three prostate cancer cell lines; androgen-dependent LNCaP and independent C4-2B and PC-3 in the presence of vismodegib in vitro. Fifty mg/kg of vismodegib were orally administered into mice bearing C4-2B and PC-3 tumors, respectively every other week for 3 weeks.

    Vismodegib significantly inhibited cell proliferation and induced cell apoptosis in all cell lines in vitro (p<0.05). Vismodegib significantly inhibited EMT in CRPC cells and tumor growth in C4-2B-bearing mice compared to controls in vivo (p<0.05). Higher expression of caspase-3 and lower expression of vimentin in PC-3 and C4-2B tumors were induced by vismodegib in immunohistochemical analysis.

    Vismodegib inhibited cell proliferation via apoptosis and also suppressed EMT, showing anti-tumor effects in mice. Further mechanistic studies are needed to investigate the feasibility of vismodegib for CRPC treatment.

    Vismodegib inhibited cell proliferation via apoptosis and also suppressed EMT, showing anti-tumor effects in mice. Further mechanistic studies are needed to investigate the feasibility of vismodegib for CRPC treatment.

    Accumulating evidence has shown therapeutic effects of herbals on breast cancer, a commonly diagnosed malignancy in women worldwide. However, their underlying mechanisms remain unclear. We aimed to explore the mode of action of a recently developed herbal combination at system-level.

    We employed network pharmacological approaches to study the mechanism of a combination of three herbals, Astragalus membranaceus, Angelica gigas and Trichosanthes kirilowii by investigating active compounds and performing functional enrichment analysis for the interacting targets.

    For in silico pharmacokinetic evaluation, ten active ingredients interacted with fifty-six breast cancer-associated therapeutic targets. Functional enrichment analysis revealed that TNF, estrogen, PI3K-Akt and MAPK signaling pathways were involved in tumorigenesis and development of breast cancer. The pharmacological mechanisms might be associated with cellular effects on proliferation, cell cycle process and apoptosis.

    The present study provides novel insights into the system-level pharmacological mechanisms underlying a herbal combination used for breast cancer therapies.

    The present study provides novel insights into the system-level pharmacological mechanisms underlying a herbal combination used for breast cancer therapies.

    The purpose of the present study was to clarify whether treatment with YM155, a novel small-molecule inhibitor of survivin, reversed cabazitaxel resistance in castration-resistant prostate cancer (CRPC).

    Cabazitaxel resistance was induced in the castration-resistant prostate cancer cell line, 22Rv1-CR. In vitro and in vivo models were used to test the efficacy of YM155 and cabazitaxel.

    Survivin gene expression was significantly higher in 22Rv1-CR than its parent cells (22Rv1). In 22Rv1-CR cells, YM155 significantly reduced expression of the survivin gene in a concentration-dependent manner. VBIT-12 cell line YM155 alone was poorly effective; however, it significantly enhanced the anticancer effects of cabazitaxel on 22Rv1-CR in vitro and in vivo.

    Inhibition of survivin by YM155 overcomes cabazitaxel resistance in CRPC cells.

    Inhibition of survivin by YM155 overcomes cabazitaxel resistance in CRPC cells.

    Triple negative breast cancer (TNBC) is an aggressive type of breast cancer with limited targets for chemotherapy. This study evaluated the inhibitory effects of novel imidazo[2,1-b]oxazole-based rapidly accelerated fibrosarcoma (RAF) inhibitors, KIST0215-1 and KIST0215-2, on epithelial cell transformation and TNBC tumorigenesis.

    Immunoblotting, BrdU incorporation assay, reporter gene assay, and soft agar assay analyses were performed. In vivo effects were studied using the BALB/c mouse xenograft model.

    KIST0215-1 and KIST0215-2 inhibited the RAFs-MEK1/2-ERK1/2 signalling pathway induced by EGF in MDA-MB-231 cells, which inhibited c-fos transcriptional activity and activator protein-1 transactivation activity. KIST0215-1 and KIST0215-2 also prevented neoplastic transformation of JB6 C141 mouse epidermal cells induced by EGF and consistently suppressed the growth of tumours formed by 4T1 cells in BALB/c mice.

    Inhibition of RAF kinases using KIST0215-1 and KIST0215-2 is a promising chemotherapeutic strategy to treat TNBC.