Trujillo Griffith posted an update 8 hours, 46 minutes ago
Lateral optical forces in a direction perpendicular to light propagation have attracted increasing interest in recent years. Up to now, all lateral forces can be attributed to the symmetry breaking in the lateral directions caused by either the morphology of the scatterer geometry or the optical fields impinging on the scatterer. Here we demonstrate, both numerically and analytically, that when an isotropic scatterer breaks the electric-magnetic symmetry, a new type of anomalous lateral force can be induced along the direction of translational invariance where the illumination striking the scatterer has no propagation, field gradient, or spin density vortex (Belinfante’s spin momentum). Our analytical results are rigorous for an arbitrary size scatterer, ensuring the universality of our conclusion. Furthermore, the electric-magnetic symmetry-breaking-induced lateral force is comparable in magnitude to other components of the optical force and reversible in direction for different polarizations of the illuminating light, rendering it capable of practical optical manipulation as well as enriching the understanding of light-matter interaction.The charging of electrical double layers inside a cylindrical pore has applications to supercapacitors, batteries, desalination and biosensors. The charging dynamics in the limit of thin double layers, i.e., when the double layer thickness is much smaller than the pore radius, is commonly described using an effective RC transmission line circuit. Here, we perform direct numerical simulations (DNS) of the Poisson-Nernst-Planck equations to study the double layer charging for the scenario of overlapping double layers, i.e., when the double layer thickness is comparable to the pore radius. We develop an analytical model that accurately predicts the results of DNS. Also, we construct a modified effective circuit for the overlapping double layer limit, and find that the modified circuit is identical to the RC transmission line but with different values and physical interpretation of the capacitive and resistive elements. In particular, the effective surface potential is reduced, the capacitor represents a volumetric current source, and the charging timescale is weakly dependent on the ratio of the pore radius and the double layer thickness.Maximally entangled bipartite unitary operators or gates find various applications from quantum information to many-body physics wherein they are building blocks of minimal models of quantum chaos. In the latter case, they are referred to as “dual unitaries.” Dual unitary operators that can create the maximum average entanglement when acting on product states have to satisfy additional constraints. These have been called “2-unitaries” and are examples of perfect tensors that can be used to construct absolutely maximally entangled states of four parties. Hitherto, no systematic method exists in any local dimension, which results in the formation of such special classes of unitary operators. We outline an iterative protocol, a nonlinear map on the space of unitary operators, that creates ensembles whose members are arbitrarily close to being dual unitaries. For qutrits and ququads we find that a slightly modified protocol yields a plethora of 2-unitaries.We uncover a local order parameter for measurement-induced phase transitions the average entropy of a single reference qubit initially entangled with the system. Using this order parameter, we identify scalable probes of measurement-induced criticality that are immediately applicable to advanced quantum computing platforms. We test our proposal on a 1+1 dimensional stabilizer circuit model that can be classically simulated in polynomial time. We introduce the concept of a “decoding light cone” to establish the local and efficiently measurable nature of this probe. We also estimate bulk and surface critical exponents for the transition. Developing scalable probes of measurement-induced criticality in more general models may be a useful application of noisy intermediate scale quantum devices, as well as point to more efficient realizations of fault-tolerant quantum computation.We report the observation of a π-type dipole-bound state (π-DBS) in cryogenically cooled deprotonated 9-anthrol molecular anions (9AT^-) by resonant two-photon photoelectron imaging. Selleck Cytarabine A DBS is observed 191 cm^-1 (0.0237 eV) below the detachment threshold, and the existence of the π-DBS is revealed by a distinct (s+d)-wave photoelectron angular distribution. The π-DBS is stabilized by the large anisotropic in-plane polarizability of 9AT. The population of the dipole-forbidden π-DBS is proposed to be via a nonadiabatic coupling with the dipole-allowed σ-type DBS mediated by molecular rotations.Effective models are constructed for a newly discovered superconductor (Nd,Sr)NiO_2, which has been considered as a possible nickelate analog of the cuprates. Estimation of the effective interaction, which turns out to require a multiorbital model that takes account of all the orbitals involved on the Fermi surface, shows that the effective interactions are significantly larger than in the cuprates. A fluctuation exchange study suggests occurrence of d_x^2-y^2-wave superconductivity, where the transition temperature should be lowered from the cuprates due to the larger interaction.We show that two-time, second-order correlations of scattered photons from planar arrays and chains of atoms display nonclassical features that can be described by a superatom picture of the canonical single-atom g_2(τ) resonance fluorescence result. For the superatom, the single-atom linewidth is replaced by the linewidth of the underlying collective low light-intensity eigenmode. Strong light-induced dipole-dipole interactions lead to a correlated response, suppressed joint photon detection events, and dipole blockade that inhibits multiple excitations of the collective atomic state. For targeted subradiant modes, the nonclassical nature of emitted light can be dramatically enhanced even compared with that of a single atom.We achieve current-induced switching in collinear insulating antiferromagnetic CoO/Pt, with fourfold in-plane magnetic anisotropy. This is measured electrically by spin Hall magnetoresistance and confirmed by the magnetic field-induced spin-flop transition of the CoO layer. By applying current pulses and magnetic fields, we quantify the efficiency of the acting current-induced torques and estimate a current-field equivalence ratio of 4×10^-11 T A^-1 m^2. The Néel vector final state (n⊥j) is in line with a thermomagnetoelastic switching mechanism for a negative magnetoelastic constant of the CoO.